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BOUNDING THE RELIABILITY OF MULTISTATE SYSTEMS

David A. Butler

Introduction

Computing the exact reliability of a complex system can involve

Therefore, a number of more

extremely large amounts of computation.

easily computed approximations to the system reliability, based upon

minimal paths and minimal cuts, have been proposed, (1], (7], [11],

[14]. Some of these approximations are conservative in that they

underestimate the system reliability, and the others are optimistic in

Thus, each approximation is actually a

that they overestimate.

reliability bound. To further reduce the computations of system

reliability to feasible levels, modular decompositions of complex

systems have been exploited, both in the calculation of the exact system

reliability and its bounds [ 4 ).

A o TS . T

All of the work mentioned above has been limited to binary

coherent systems. Recently a number of investigators have begun to deal

with multistate systems, in which components can exist in more than two

states, [2), [5), [ 6], [10), [12], [13). This report will develop

reliability bounds for multistate systems analogous to those mentioned

The development of these results will be

above for binary systems.

similar to that for their binary counterparts, and readers interested

in the details of the proofs in Sections 2 and 3 may find it helpful to

refer back to the corresponding binary proofs.




The notation used in this report follows, with a few exceptions,

that contained in [1]), [6]:

1)
ii)

111)

iv)

v)
vi)
vii)

viii)

ix)

x)

xi)

xii)

x = ('1‘ T xn) denotes the vector of component states.
C=1{1, 2, ..., n} denotes the set of component labels.

§={0, 1, ..., M} denotes the set of component states, i.e.,

x, € S for all { € C. The states are ordered, with 0
being the worst state and M the best.
The terms "increasing" and "decreasing" are used in the sense

of "non-decreasing” and "non-increasing”, respectively.

X = (xl' TEREEY xn) denotes a random vector of component states.
qij - Pt(x1 - 4) i€, JaB,
Q) = Pr(x1 > ) 166, 1885

A “performance-distribution vector" is a vector

v - (vo. Vir ses v") satisfying 0 < , ) o Vo * 1, and
Vi 2 Vg i=1, ..., M. For example, Q‘(°) is such a
vector.

A "performance-distribution matrix" is a matrix all of whose
rows are performance-distribution vectors. For example,
Q.(*) 1s such a matrix.

Y <X means y < x for all 1, and Yy <% for some {.

n n
u g2l n Qq- z).
i=]1 i=]1

4 : 8" + 8. 4(x) 1s the system state, given the vector of

component states i{s x.




When ‘l' cees X are independent, we will write

m 0 1
W@ = Pris) > m), and H,(Q) = (M@, Hy(Q), ..., Hy@).

Note that ll.(Q) is a performance-distribution vector.
Script letters €, &, ¥y, W, 7 will denote partitions

1

of C into M+ 1 sets, e.g., P = (Po. By sk P“) where

i
FCe. NP f > B
C N I is empty for 1 ¢ j udjt:)orj c

Given a partition # , x(#) = (xl(.f). & o5l xn(v)) will

x, ()
denote a vector in s" for vhich {1 e¢P i for all 1.

(Intuitively, # defines the state of each component by
partitioning the set C of components into M + 1 subsets;
x(#) 1is the vector of component states corresponding to #.)
There {s a one-to-one correspondence between partitions

of C and vectors in S".

Given two partitions ¥ and # , we will define the

partition 7 = ¥ v & by

x‘(‘;’) - ux(xi(l s x‘(ﬁ))

and the partition P = ¥ AN by

'i("’) - nn(x‘(l’). x‘(#)) ieC.

(k‘. x) = (xl. cees Xy g k, Xigp® oo xn).




There is no agreement on the most appropriate definition of
"multistate coherent system". Almost no two definitions agree, the
differences ranging from minor to major. Griffith [10] discusses and
compares a number of possible definitions. The definition we will use
in this report is one proposed earlier by the author [ 5], and is very

similar to one proposed in [10].

Definition 1.1. The ordered pair (C, ¢) 1is a multistate coherent

system if and only if

$(0) =0 and ¢(M) = M, vhere M= (M, ..., M),
¢$(x) 1s increasing in x,
for every { = 1, ..., n, there exists an x such that

.(Hi. !) > ‘(01' _!)'

If some component {1 naturally has only states 0, ..., k, where
k < M, one can nonetheless formally consider the component to also

have states k + 1, ..., M, which are operationally identical to

state k, and then simply take 94y to be zero for & > k. Thus,

systems whose components have varying numbers of natural states can

be accommodated in the above definition.

Definition 1.2. The multistate coherent system (A, x) 1is a module

of the multistate coherent system (C, ¢) if and only if A CC and

c
#(x) = t(x(gA). x‘ ), where ¢ 1is a multistate coherent structure

c
function, and EA. _x_A denote those subvectors of x consisting of

coordinates which are in A, AS, respectively. 0




Definition 1.3. A modular decomposition of a multistate coherent

system (C, ¢) 1is a set of disjoint modules (Al, xl). "o %a (Ar. xr)
together with an organizing structure ¥ such that

i) ¢ 1is a multistate coherent structure function,

i1) Al' PR Ar partitions C,
A A

111) o¢(x) = t(xl(g_ 1). seby xr(x ;2

In the following sections the criterion by which we will assess

the system performance is Pr{¢(X) > m} where m =1, ..., M. This

criterion differs from some others which have been proposed, notably

E[¢(X)], or E[u(s(X))], [ 6], [10]. To compare these criteria, consider

a very simple example of two systems having states 0, 1, 2. The first

system has a 50X chance of working perfectly (being in state 2) and

a 50X chance of failing totally (being in state 0).

The second always

is partially functioning (state 1). Under the E[¢(X)] criterion,

these two systems perform identically, yet the designer who only wanted

to avoid total failure would surely prefer the second. At a system level,

the design specifications are likely to be of the form "meet or exceed

a certain system state at least a certain percentage of time", and

80 argues in favor of a mini{mum-level-of-performance criterion. In

the following we will speak of "system performance at minimum level ="

to describe a criterion of system performance at state m, m + 1, ...,

or M.




TR

2. Bounding the System Reliability by Means of Paths and Cuts

Using E[¢(X)] as the measure of system performance, El-Neweihi,
Proschan, and Sethuraman [ 6 | have developed an upper and lower bound
for the system performance level. These bounds are derived by comparing
the structure ¢ to a "parallel” system and a "series" system built i
from the same components. Other common bounds for binary coherent systems,
such as the max-min bounds [ 1] , the path-cut bounds [ 7 ], and the
Bonferroni bounds [11], have not been generalized to multistate

systems where E[¢(X)] 1s the system performance criterion. The

difficulty in doing this would be to define the notions of paths and cuts
which such bounds require. Performance criteria such as E[¢(X)], or

the more general E[u(4(X))] (u(+) a utility function) proposed by
Griffith [10], do not seem compatible with the notions of paths and cuts.
However, notions of paths and cuts can be developed when the minimum-
performance-level criterion is used. (It should be noted that with an
appropriate choice of wu(+), Griffith's criterion of E[u(¢(X))]

reduces to the minimum-performance-level criterion.)

Definition 2.1. A partition @ 1{s a cut for system performance at

minimum level m 4{f and only {f ¢(x(¢)) <m. A cut € is a minimal

cut for system performance at minimum level m 4if and only if 4(y) > m

for all y > x(¥). o]

Definition 2.2. A partition # {s a path for system performance at

minimum level = if and only if ¢(x(9)) > m. A path & is a minimal




path for system performance at minimum level m if and only if
$(y) <m for all y < x(3).
Readers wishing a more complete discussion of these two

definitions are referred to [5].

In much of the following we will for the sake of brevity simply
refer to min cuts and min paths when the minimum system-performance
level is clear from the context. Also, in light of the one-to-one
correspondence between a partition ¢ and the vector x(%), we will
interchangeably refer to min cuts by € or x(¢), and to min paths
by # or x(F).

Consider a multistate coherent system (C, ¢) with min paths

."1.;\?2. «evy #, and min cuts Vl. ?2, veey € for its performance

t
at minimum level m. Define the functions pj(g_) and xj(_x) by

means of the following equalities

n
°1® * Yoo = ) Tapx, (o))

“1® ° Toghucw ' Moy

n
- ] ~ n I(‘ <x j.l. ssey Co

o1 (%y<xy (€))

3
t
{
?
|
!
¥
:
i
:
i
]




The function °j(5) is called the minimal-path structure function

corresponding to 4:j. and ‘1(5) is called the minimal-cut structure

function corresponding to ,ﬁ[j. As the following theorem shows, the
functioning of the system at minimum level m is determined by

either its minimal paths or its minimal cuts.

s
V- Iagper” 5 W ° 8 8)

t

ii 1 - -
' Neom) 3’-71 ¥y @ 13;(‘1@)

The proof follows readily from Definitions 2.1 and 2.2.

To establish bounds on the system reliability based on min paths
and min cuts, we will require the following lemmas, due to Esary, Proschan,

and Walkup [ 8 ].

Tl. Tz. AP Tn are associated random variables, then

n :
s s . 28 ) 3 PR, > %
1 n n {=1 i

1) (2.5)

n
Pr(T) <ty «oon T <t} > 1T Pr(T, <t

}

n i

i=1

for any choice of Bys eees oo




Lemma 2.2, If T = ('l'l. 'rz. ssep Tn) is associated and
(1(_'!'_). P ft('[) are increasing functions of T, then

11(1), cony !k(_'[) are assoclated.

Theorem 2.2. (Path-Cut Bounds). let X = (xl. Xpr ey xn) be

associated. Then

t 5
n Pr(xj(!) =1} < Pr{¢(X) > m} < U Pr(pj(y -1} (2.7)
n i=1

Proof. ‘1(5" seap xt@ are increasing functions of X and so by
Lemma 2.2 are themselves associated. Hence, by Lemma 2.1 and Theorem 2.1,

and the fact that «(*) 1is a binary-valued function,

Pr{i¢X) > m} = Pr(xl(!) - BRSO :t(_x_) > 0}

t
> 1 Prie,@ = 1) .
o S

To establish the upper bound, use Theorem 2.1 to write

Pr{¢(X) >m} = 1 - Pr{¢(X) < m}

-1 - Pr{ P10 <0, «vvy 0 (X) <0} . (2.9)

Since 91@). sesy o.(_x_) are increasing functions of X and therefore

by Lemma 2.2 associated, we can apply Lemma 2.1 to obtain




N
Pr{¢(X) > m} <1 - T Pr{ Oj(l) < 0}
i=1

N
= I Pr{ oj(g) =1} . (2.10)
=1 0

For convenience, take Qi(nﬂ) = 0 and the product over an empty set

of indices to be one.

Corollary 2.1. (Path~Cut Bounds for Independent Components). Let

X X be independent. Then

1* e X

t M
ni-n 0 a-eu+m]<ie
=1 k=0 1€C:

Proof. By the definition of °j' and the independence of X

n
P x - - -
r(DJ(_) 1) = Pr {-'1 I‘xil‘i("’j)) 1

n
=1 orix e x ()




Since any {1 € C is in exactly one subset, say P:. of the partition

-0 e P

?, 3

3

k
Prix, > x,( ”)} = Pr{X, > k} = Q, (k) vhen 1 € Pj .

"

n M
Prio (X) = 1} = 7 PeiX, > x (P)}= T 1T
Sz Y k=0

Q, (k) (2.13)
i {=1 ek i

k
b

and the upper bound follows from Theorem 2.2. The lower bound follows

similarly. 0

Theorem 2.2 and Corollary 2.1 provide lower bounds based upon cuts and
upper bounds based upon paths. We next establish, in Theorem 2.3 and
Corollary 2.2 below, lower bounds based upon paths and upper bounds

based upon cuts.
Theorem 2.3. (Max-Min Bounds).

max (Pr(pj(!) = 1)} <P{e(X) > m} < min (Pr(xj(;) = 1}} . (2.14)
1<)<s 1<yt

Proof. By Theorem 2.1, for any choice of j =1, ..., s and

J. - 1. “eey t

pj(_!) S I(.(D_{‘) < Ki(!)




S ——

Hence '

Pr(oj(!) = 1} < Pr{¢(X) > m) g_?r(:j. X) =« 1) (2.16)

for all 1 < jJ <s and 1 < §'< t. The result follows by maximizing

over j and minimizing over §'. O

The above result holds regardless of whether or not the components

are independent or even associated. When the components are associated

we have the following.

Corollary 2.2. (Max-Min Bounds for Associated Components) If X s

assocliated, then

1 ”
max {J]T IN Q ()} < Ple(X) > m)
- 1<j<s |k=0 ‘Qk

b

v
mio {1- 77 gM-qk+D)| @an
lcisel B0 ook
b

A

Proof. By Lemma 2.2, the random variables )" i=1, & soss B

I
(X>x, ( (

are associated. From Equation 2.12 and Lemma 2.1,




n
Pt(oj(y - 1} = Pr ‘1.11 l(x‘:x‘(’j” >0

n
> 1 ePeix, > x (P)) . (2.18)
fol 1 g

Now applying the second equality in Equation 2.13

M
Prip, @ =1 > N1 1 Q) (2.19)
J k=0 . ok

b

Applying this inequality in Theorem 2.3 yields the lower bound. The

0

upper bound follows similarly.

The Bonferroni inequalities [ 9 ] can also be used to establish

reliability bounds based upon paths and cuts.

Lemma 2.3. (Bonferroni Inequalities). For arbitrary events '1' seip l‘,

L

1) Pr(E; VE, U UE) < ,-{-1 Pe(E,) (2.20)
L

11) Pr(E, VE, V.- UE) > le Pr(E,)

|
- . n{;-x Pr(E, ng) . (2.21)
jek




Applying the Bonferroni inequalities to the events (pj(;) -1},

J=1, ..., 8, and {x (X) =0}, § =1, ..., t yilelds two more sets

b
of lower and upper bounds on the system reliability.

Theorem 2.4. (Bonferroni Bounds).

B
1) Pris) >m) < | Prio () = 1)
=1

: R
11) Prie(X) >m) > J Pr(oj(_l_) - 1)
i=1

u
ot ! Prio (0 = ¢, (0 = 1) (2.23)
k=1
J<k

t
Pris(X) >m} > 1 - ] Prix, (X) = 0)

3=l

t
Pri¢(X) >m) <1 -] Prix,(X) = 0)
1=l

t
o TR ® =@ =0} .
Jok=1 3
J<k

The above theorem holds regardless of whether or not the xj'- are

independent or associated. Under independence we have

Coro 2.3. (Bonferroni Bounds for Independent Components). If
xl. ey lu are independent, then




s M
n» @< ] o0 M, (2.26)
=1 k=0 “,:
: B s M ,
w K@ I M pem- I oo @2)
=1 k=0 m,l; jizx k=0 ok }

e e Ve PV 2,

t M
111) u'.' @21- ] 1 M a-qk+1), (2.28)
j=1 k=0 ld:"‘
|

£ K
tv) Hj@ <1 - ] [ I1Q-0Qk+1)
=1 k=0 " k

e
g o
+ n na-qk+1)) (2.29)
J,i=1 k=0 .k
jer

dhite Wa ol iy €ne,.

Proof. Equation 2.13 and Theorem 2.4 establish part (1) of the theorem;
part (111) follows similarly. To establish part (i1), it suffices to

show that

N
Pelo, ) = 0,0 = U = T[T Q) . (2.30)
k=0 vk




AT et Ty A

Now by the definition of 7 and the independence of Xl. wssp Xn

n
S N 2t W Nt (R

“ 1N lmam )

Bl
I n Q (k) .

k=0 o
(2.31)

Part (iv) follows similarly. ()

The bounds established in Theorems 2.2, 2.3, and 2.4, and
Corollaries 2.1, 2.2, and 2.3 are direct generalizations of the path-cut
bounds for binary systems developed by Esary and Proschan [ 7 ], the max-
min bounds for binary systems developed by Barlow and Proschan [1 ],
and the Bonferroni bounds developed by Messinger and Shooman [11].

As for binary systems, the multistate max-min lower bound seems
better than the path-cut lower bound (i.e., provides a tighter bound)
for systems composed of very unreliable components, and the path-cut
lower bound seems better for systems composed of very reliable components.
Similarly, the max-min upper bound seems better than the path-cut upper
bound for systems of highly reliable components, and the path-cut upper
bound seems better for systems of very unreliable components. Regardless
of which of these two bounds is likely to do better for a particular

system, one probably should calculate both; since both bound pairs




involve the calculation of the same quantities, there is very little
extra work in also computing the second pair while computing the first.
Of course, if one is only computing lower bounds (or only upper bounds)
this comment does not apply.

The path-based Bonferroni bounds (parts (i) and (i1) of Theorem
2.4 and Corollary 2.3) are most useful when component reliabilities
are low, and the cut-based bounds (parts (iii{) and (iv) of Theorem 2.4
and Corollary 2.3) are most useful when component reliabilities are high.
In intermediate cases these bounds may provide no useful information,

since they may take values outside the range [0, 1].

Example 2.1. Consider the following three-state coherent system (C, ¢)

consisting of 10 independent components, and having min-cut vectors as

follows:

() 21 (m ~ 1) () > 2 (m = 2)

A, 0, 2, 0, 0, 1, 0,1, 1, 1) (1, 0, 2, 0, 2, 2, 2, 2, 0, 2)
£, 0, 2,0, 0,1, 0,1, 2, 0) (1, 0, 2, 0, 2, 2, 2, 2; 2, 1)
(1, 0, 2, 0, 2, 0, 0, 0, 1, 1) (e dy Lo 203 2 25 45 0, 8
1, 0, 2, 0, 2, 0, 0, 0, 2, 0) Qo s 35 35 25 @5 25 25 8, 8)
(1, 1, 15 1, 0; 2, 0, 1, 1, 1) (2; 2, 0, 2, 2, 2, 2, 2, 0, 3)
e X, 3, 3,0, 1,01, & 0) (2, 2, 0, 2, 2, 2, 2, 2, 2, 1)
1, 1, 1; 1, 2, 0, 0, O, 1, 1) (2, 2, 2, 2,0, 1, 0, 1, 0, 2)
€1, 1, 1, 1, 2, §, 0, 0, 2, O) (2, 2, 2, 2, 90,1, 0, 1 25 1)
2, 2, 0, 2, 0, 1, 0, 15 1,:)) (2, 2, 2, 2, 2, 0, 0, 0, 0, 2)
(2, 2, 0, 2, 0, 1, O, 23, 2, 0) (2, 2, 2, 2, 2, 0, 0, 0, 2, 1)
(2, 2, 0, 2,2, 0, 0, 0, 1, 1) (2, 2, 2, 2, 2, 2, 2, 2, ), })
(2, 2, 0, 2, 2, 0, 0, 0, 2, 0) (2 25 24 2, 25 24 24 2, 2, 0)

17



We will take the component-performance-distribution matrix, Q, to be

1.0 0.8 0.5
1.0 0.8 0.4
1.0 0.9 0.8
1.0 0.5 0.1
1.0 0.6 0.5
1.0 0.9 0.8
1.0 0.7 0.6
1.0 0.5 0.1
1.0 0.7 0.4
L 1.0 0.6 T N

Calculated reliabilities and reliability bounds are as follows.
(Computations were done on a computer since a direct computation of

H‘(Q). for example, would be very difficult to do by hand.)

n=~l Pr{e(X) > 1} = .996729
Lover Upper
Path-Cut Bounds . 993449 .999269
Max-Min Bounds .8 .998963
Bonferroni Path Bounds -6.0478 4.82
Bonferroni Cut Bounds .99343 1999662
a~2 Pr{¢(X) > 2} = .317652
Lower Upper
Path-Cut Bounds .237988 .900234
Max-Min Bounds .14 52
Bonferroni Path Bounds -9.49076 2.22278
Bonferroni Cut Bounds =. 14466 + 539065

Note that some of the Bonferroni bounds are outside of the region [0,1].

18
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3. Bounding the System Reliability Using Modular Decompositions

The concept of a module, a subset of the components of a system

having its own structure function and acting like a single component

in relation to the rest of the system, is well known in reliabilicy [ 3].

For large, complex systems it is almost inevitable that modules will

exist, simply because it seems to be inherent in man's way of thinking

to break a large problem into a number of smaller problems. In

system design this translates into sequentially breaking a complex

machine into a number of systems, each system into subsystems, each

subsystem into a number of components, etc. This results in a

hierarchy of modular decompositions of the overall machine. There are

two important reasons to consider exploiting the modular decompositions

of a system in developing reliability bounds. The first, and probably

the most important from a practical point of view, is that the

calculation of all the min paths or all the min cuts for a very complex

system can be incredibly involved and time consuming. For example, the

so-called "Rasmussen report” [15]) on the assessment of accident risks

in U.S. commercial nuclear power plants includes two appendices of

approximately 550 pages each, which are entirely devoted to descriptions

and listings of the fault-tree models used for analyzing boiling-water

and pressurized-water reactors. To calculate directly all the min cuts

or all the min paths for such fault-trees is not feasible.

By exploiting modular decompositions, the computations involved

in computing reliability bounds can be greatly reduced; indeed for




many complex systems, this would be the only practical (from a
computational point of view) way to compute reliability bounds. The
second reason to use modular decompositions in computing reliability
bounds for the system is that the bounds produced are always as

good as, and usually better than, the ones resulting from a more direct
approach.

The fundamental idea in exploiting a modular decomposition of a
system to obtain bounds on the system reliability is to first determine
lower-bound vectors on the performance distribution of each module, and
then to treat these lower-bound vectors as if they were actual
performance distributions and the modules as if they were components
in determining a lower bound for the reliability of the organizing
structure which relates the module performances to the system performance.
Bodin [ 4 ] has shown that for binary systems following such a procedure
will result in tighter path-cut bounds than those obtained directly.
We will establish similar results for multi-state systems.

Consider a multistate coherent system consisting of independent

components, having structure function ¢, and component performance~

distribution matrix Q. Define L,(Q) = (Lg(Q). L:(Q). Ty L':(Q))

as follows:

L™ = max (0"(Q)),




gl T Y NI

nf(o> -1, (3.2)

e T PR

and
3 L tl M
; D@ = M- 11 11Q-Qk+1)], (3.3)
§ j=1 k=0 “xk
b

and ?1. ?2. sans. W in the above equation are the min cuts

i
v relative to system performance at minimum level . The quantity

t

D:(Q) is simply the path-cut lower bound for the system

reliability relative to performance at minimum level L. One might

naturally conjecture that L:(Q) - D:(Q) for all m (which is
equivalent to conjecturing that D:(Q) is a decreasing function),

but, perhaps surprisingly, this is not so, as the following example

shows .
E ,
; Example 3.1. M= 2, C= {1, 2, 3} 1
Min-Cut Vectors for System Min-Cut Vectors for System
Performance at Minimum Level m=l Performance at Minimum Level m=2
§ a, o, 0 (1, 1, 1
3 (0, 1, 0)
E (1, 0, 0)
011
: Q1.2 1
@ = 11 - a-.2%-.0)° W =1-a-.»°
= 076 - 271




L

.(Q)) < max {Pr{¢(X) > t}} = Pr{¢(X) > m},

Since L:(Q) = max {D
m< <M

m< L<M

L:(Q) is itself a lower bound on the system reliability at minimum
performance level m, and is indeed a generally better bound than

D:(Q). Thus, we have proved the following corollary.

Corollary 3.1. D’(Q) < L.(Q) b “.(Q)-

In addition to providing a better lower bound than D.(Q). L.(Q) also
has the advantage of being itself a performance-distribution vector
and can thus be used in computing system reliability bounds
sequentially via modular decompositions.

The following lemma, which will be used in proving the main
result of this section, shows that the more reliable the components,

the better the path-cut lower bound is on the system reliability.

Lemma 3.1. If Q <, then L (@ <1, @.

Pty

Proof. Since Q < a.

t M
0@ = ML= 11 [ Q- Q1))
j=1 ke0 K
3

t M ~
csfMl-N 1Q-Q 6= 0" Q)
=1 k=0 | ok \

3

for S =1, ..o M. Thes
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L@ = max (o:(on < max (n:(b')) . :."'(6). (3.5)
mel <M m<i <M 0

Lemma 3.2. Suppose that the coherent structure ¢ can be decomposed
into r modules having structure functions Xyv eoes xr. and that the
system performance at minimum level m is dictated by the module

1

performances according to a single cut € = (Co. € 5 sann (.J‘). i.e.

r
Yo > m " H T oox () (3.6)

Furthermore, assume that all components are independent. Then

= r xt(C)
n.(Q) .1 ¢ i Q) (3.7)
i~1 *g

Proof. Diagramatically, we can express the system in terms of its

modules as follows.

—

a0 B

= -

sy ’tx,(;m,(w) e
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Write in terms of its minimal-cut structure

M > x, (@)
functions, «,, (x), x ,(X), ..., ‘1t1(5). as follows:

t

i
n ‘11(5)' S (RS

1 -
g x)>x, (€)} y=1

x, (€) “4
D, (Q = T Pric, (x) =1} L8 0, sany

n j=1 1

*
Now consider a new system ¢ obtained from ¢ by replacing each

replicated component in each min-cut structure function « by

i)
-
an independent but equally reliable component. Let X be the random

- .
vector of component performances for ¢ , and Q Dbe the component-

*
performance distribution matrix for ¢ . Diagramatically,




e e o T P ————

"
By the independence of components in ¢ ,

t

r i
Pr(o.@_.) >al= U NN Pt(xu(!) - 1) (3.10)
i=] §=1
and so by Equation 3.9
r x,{(¢)
e - Ut (. (3.11)
¢ =1 X

k)
Now the min cuts of ¢ and ¢ are identical, and each min~cut
structure function i{s obtained by applying the "parallel operator"
U to k”l. S n k"’r for some choice of §,, ..., § (recall
there is no overlap of components among the various modules). Thus,

*
Dya(Q) = D3(Q). Combining this result with Equation 3.11,

e ox W)
o' (@ =,aeQ" >05,e) - . (3.12)
i=]1 i 0

x;-mxxrq:&mnlvmi%©.

Proof. This lemma is a restatement of Theorem 4.2.1 in [ 6].

We are now in a position to establish the main result of

this section.
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Theorem 3.1, Let (C, ¢) be a multistate coherent system of
independent components. Suppose (C, ¢) has a modular decomposition
into r modules {“1' x‘)). i=1, ..., r, with module organizing

structure ¥%. Then

Ly (X‘(Q))

H,(Q) = H, (2 (Q) >
’ AT B (2, @)

2 L,(ZK(Q)) > L@, (3.13)

wvhere

’ull @] L (Q

@ =| Z @ =

B @ | b, (0 )

r

Proof: Let x(x) = (xl(g). ceny x'(_x)). To establish the first

equality, note that for any m =0, 1, ..., M

Hy(Q) = Prie(X) > m) = Lo xysni™F & = ¥}

I
“sn

{n 1“(‘(9)_,__)&(; = x) (3.14)

For any y © s*, let A = (xes" : y(x) = y). Since

P o B




S —————

U AQ = s",

=
- ' -
W@ = 1 Tyym i [ Prixex

1 P - - . -
,c»{sf ((pomfTa@ = ) = Wlr @), (3.19)

To establish the inequalities, note that by applying

Corollary 3.1 to the organizing structure ¢ and the modules

xl. Sse) lr. ve h.v.
ﬂ.(.ﬂ'l(Q)) > L'(.I‘(Q))

K.(.Q"(Q)) > L.(.?l(Q))

. 3.16)
.l"(Q) > Ix(Q) (
Applying Lemmas 3.1 and 3.3 yields
- - 7
l'(-l'x(Q)) 2 I.(Q‘(Q)) and l-'(-l'x(Q)) 2 L.( 2‘(0)) (3.17)

It remains only to show that L’(II(Q” 2 L.(Q). Let (1. seey Ct

denote the minimal-cut structure functions for ¥ performing at minimum
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level &, and let 0,(5) - (j(xl(g). .5 xr(y). Let Mypr e u’tj

be the minimal-cut structure functions for ¢, (performing at minimum

]
level 1, since 0’ is binary-valued). Then the collection

("jk P el s KSEeld i, tJ) are the minimal cuts for ¢

performing at minimum level &, since: & 0 implies ’j -0,

¥

which implies £, = 0, which implies ¢ = 0; with § fixed and k

)
varying, the "jk are distinct, because they are the min cuts for

01. and for k varying they are distinct because no component is in

more than one module; each "jk is minimal for ¢ since each is
minimal for 01. Thus
L B
D.(Q) - n Pr(ujk =1} . (3.18)
J=1 k=l
Now by Lemma 3.2
P NAYL)
o:(Q): uot Y,
3 t=1 4
where Vj is the min cut corresponding to Cj' Since Lx Q > !)x Q)
i i
1 AR o 1
D, @< U L Q =H (£ (@) . (3.19)
.J 1=1 X gj X
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Using this result we can write

t t
1 1 1
D(Z (Q) = T W, (7 (Q) > T b, (Q
L N e R
t 5
« IT I1Prein - 1} . (3.20)
jel k=1 3 ‘
Combining this result with Equation 3.18 ylelds
o'z @) >0'@ t=o,1 M (3.21) 1
(2, @) >, Ol e W :

Finally,

L2 (@) = max (D'(Z (Q)) > max (0'@Q)) = L®(Q . (3.22)

It is also possible to use modular decompositions in establishing

upper bounds on the system reliability. Since all results and their
proofs are close analogues to those which were developed for the
path-cut lower bound, we will simply state without proof the main
theorem, omitting the preliminary results.

! Let
i 0
| 3 3.(Q) L
| d
2 't u
l.(Q) - n n Q, (k) (3.23)
171 K0 ok
J

3




wvhere -fl. ssep f' are the min paths relative to system performance
L
at minimum level &. (The quantity I.:(Q) is simply the path upper

bound for the system reliability relative to performance at minimum

level 1t.) Let

v™@Q) = min (*@Q) and U@ = @%@, ..., @) . (3.20)
) oct<m ¢ ° ¢ ¢

It is easily verified that U.(Q) > H’(Q). and that U.(Q) is a

performance-distribution vector.

Theorem 3.2. Under the same hypotheses as Theorem 3.1,

U (' (Q)
: Oy
B.(Q) B'(J‘(Q)) <

< < U (% (@) < U,(Q,
(u.wx(qn L ¢ ¢

- b
le(Q)

We will complete this section with an example {llustrating the

decomposition-based method of calculating system reliability bounds.




Example 3.2. Consider the following three-state coherent system

(C, ¢) consisting of 10 independent components, and having a modular

decomposition into 3 modules with structures Xpr Xgv Xy and
organizing structure %. The first module consists of components

1, 2, 3, 4, and has min-cut vectors as follows:

xl(‘) 21 (==]) xz(') 22 (w=2)
0, 1, 0, 1) 1,0, 2,0
(2, 0, 0, 0) (, 1, 1, 1)

2, 2,0, 2

The second module consists of components 5, 6, 7, 8, and has a
structure identical to that of the first module. The third module

consists of components 9, 10 and has min-cut vectors:

XJ(.) 21 (==1) xy(*) 22 (w=2)
a, 0, 2)
(2, 0) 2, 1

The organizing structure ¢ has min-cut vectors

)21 w1 ) 2 2 =2
(1, 0, 0) (1, 2, 1
(2, 0, 1)

2, 2,0 .




v

] 1 From the min-cuts of Xyr Xgo Xg» and ¢ one can compute the min-cut '
vectors for ¢, which turn out to be identical to the min-cut vectors

of Example 2.1. Therefore, we have found a modular decomposition of

P

i that system. Taking the component performance distributions to be

identical to those of Example 2.1, we can compute

L.(Q) = (1.0, .993449, .237988)
H.(Q) = (1.0, .996729, .317652)
U.(Q) = (1.0, .999269, .900234)

Lx (Q) = (1.0, .979308, .808830)
1

Hx (Q) = (1.0, .981200, .833000)
1

U (Q) = (1.0, .988336, .930811)

L (Q = (1.0, .963724, .657930)
H (Q) = (1.0, .969400, .676000)
U (Q = (1.0, .982612, .914354)

Lx (Q = (1.0, .312000, .140000)

3

Hx (Q) = (1.0, .360000, .140000)
3

Ux (Q) = (1.0, .392000, .140000) ]
3

L.(ifl(Q)) = (1.0, .995229, .252572) 4
e H(Z, (@) = (1.0, .995229, .274072)

il n




Ly (2, (@) = (1.0, .996729, .300184)

u,(xx(o)) = (1.0, .996729, .317652)

U, (X, (@) = (1.0, .996729, .390005)

u*(w‘(o)) = (1.0, .999269, .370486) ;;
§

u.(w‘(o)) = (1.0, .999269, .448339)

In all cases, L _(+) {is identical to D _(*), and U _(*) to E_ ().
Note that the two computations of the system reliability, direct and
decomposition-based, agree. Also, note that the decomposition-based
bounds are indeed tighter than the direct bounds which were computed in
Example 2.1 and are repeated here.

A comparison of the computer times required to compute the
direct bounds and the decomposition-based bounds for the examples may
serve to {llustrate the computational advantage of exploiting modular
decompositions. All bounds were computed via a single program written
in BASIC and running on a Digital Equipment Corporation System 2060
computer. The program used 512.14 CPU-nocondn. to compute the path-cut
bounds and system reliability directly, and a total of 3.66 CPU-socond-*
to compute the path-cut bounds and reliabilities for each module and

the organizing structure ({.e., the figures shown in example 3.2).

'Thcto figures reflect the substantial calculations necessary to
determine the min paths from the min cuts for each system.

i3
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